
z/OS

z/OS Batch Runtime:
Planning and User's Guide

SA23-2270-01

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 51.

This edition applies to version 1, release 13, modification 0 of IBM z/OS (product number 5694-A01) and to all
subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces SA23-2270-00.

© Copyright IBM Corporation 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . v

Tables . vii

About this information . ix
Who should use this information ix
Where to find more information ix

Information updates on the web ix
The z/OS Basic Skills Information Center. x

How to send your comments to IBM xi
If you have a technical problem xi

Summary of Changes . xiii
Changes made in z/OS Version 1 Release 13 (as of October 2011) xiii

Chapter 1. Overview and planning of z/OS Batch Runtime 1
Requirements for z/OS Batch Runtime 2
Planning for z/OS Batch Runtime 3

Chapter 2. Invoking z/OS Batch Runtime 5
Configuring Java. 5

Improving Java start up time 5
Java environment variables for z/OS Batch Runtime 5

Main JCL statements needed for BCDBATCH 6
JCL for the BCDBATCH job. 7

Sample BCDBATCH JCL . 7
Procedure for modifying the BCDBATCH job 9

JCL for BCDIN configurations options 11
Sample BCDIN File . 11
Procedure for modifying the BCDIN JCL 13

Sample BCDPROC to invoke z/OS Batch Runtime. 14

Chapter 3. Defining connectivity for the database 17
Considerations for setting up z/OS Batch Runtime services for a database

resource . 17
DB2 Java Database Connectivity (JDBC) and z/OS Batch Runtime 17
Transaction management and global transactions 17
Commit and rollback services of z/OS Batch Runtime 18
End-of-job clean up processing 18

Chapter 4. Application interfaces for z/OS Batch Runtime 19
Configuration options reference 19

Configuration option types . 19
Configuration option names 19
Program arguments . 21

Helper functions for z/OS Batch Runtime 21
Java function for commit and rollback 21

Support elements for JDBC and DB2. 22
Language Environment restrictions for z/OS Batch Runtime 22
Completion codes for z/OS Batch Runtime. 23

Chapter 5. Application structure and build considerations 25

© Copyright IBM Corp. 2011 iii

||

||

||

DLL considerations for COBOL and Java 25
Example of a COBOL COMMIT wrapper 25

Examples of program structures 27
Building programs: compile and link JCL examples 29
Code examples. 31

Example: Java code calling COBOL 31
Example: C DLL calling COBOL from Java 33
Example: COBOL code invoking Java 33

Binding DB2 with Java JDBC and COBOL embedded SQL 43
Commands for SQLJ program preparation 44

Chapter 6. Troubleshooting for z/OS Batch Runtime 47
Trace facilities for z/OS Batch Runtime 47
Log facilities for z/OS Batch Runtime. 47
Signalling and exception handling by z/OS Batch Runtime 47

Appendix. Accessibility . 49
Using assistive technologies . 49
Keyboard navigation of the user interface 49
z/OS information . 49

Notices . 51
Policy for unsupported hardware 53
Trademarks . 53

Index . 55

iv

||

||

Figures

1. Overview of the z/OS Batch Runtime environment 2
2. Example: BCDBATCH JCL procedure . 8
3. Example: JCL BCDIN configuration options . 12
4. Example: BCDPROC statement . 15
5. Example: COBOL COMMIT wrapper . 26
6. Example: JCL used to compile COMMIT wrapper 27
7. Example: COBOL program calling Java and unmodified COBOL 28
8. Example: Java program using OOCOBOL to call COBOL 28
9. Example: JCL for COBOL DB2 phone program. 30

10. Example: Java code calling COBOL . 31
11. Example: C interface DLL for calling COBOL from Java 33
12. Example: COBOL DB2 phone application that invokes Java under z/OS Batch Runtime. 34
13. Example: JDBC-only case . 44

© Copyright IBM Corp. 2011 v

||

||
||
||

vi

Tables

1. Summary of reference information for required programs 2
2. JCL summary for BCDBATCH job . 6
3. Configuration option types . 19
4. Completion codes for z/OS Batch Runtime . 23

© Copyright IBM Corp. 2011 vii

||

viii

About this information

This publication describes the IBM® z/OS Batch Runtime component of z/OS. z/OS
Batch Runtime provides the ability to update the DB2® database from both COBOL
and Java in a single transaction.

This publication is organized as follows:

v Chapter 1, “Overview and planning of z/OS Batch Runtime,” on page 1. This
chapter describes overview information for z/OS Batch Runtime and how to
invoke the program.

v Chapter 2, “Invoking z/OS Batch Runtime,” on page 5. This chapter describes
how to invoke the z/OS Batch Runtime program through the job control language
(JCL).

v Chapter 3, “Defining connectivity for the database,” on page 17. This chapter
describes planning connectivity for z/OS Batch Runtime.

v Chapter 4, “Application interfaces for z/OS Batch Runtime,” on page 19. This
chapter describes application programming interfaces for z/OS Batch Runtime
including: options, support elements for the Java Database Connectivity (JDBC)
and DB2 programs, environment variables, completion codes, and any applicable
API.

v Chapter 6, “Troubleshooting for z/OS Batch Runtime,” on page 47. This chapter
describes diagnostics and troubleshooting procedures for z/OS Batch Runtime.

Who should use this information
This publication is intended for experienced Java and COBOL programmers who
are familiar with DB2 and plan, develop, and test applications that run on z/OS. It
describes how to improve interoperability between COBOL and Java applications by
allowing you to share a local DB2 attachment in a single hybrid Java COBOL
application. Advanced knowledge of the Java Native Interface (JNI), COBOL
programming, and DB2 is required.

Note: All examples in this publication are for illustration purposes only. You must
replace any example or code parameters with the correct specifications for your
installation.

Where to find more information
Where necessary, this publication references information in other publications, using
shortened versions of the publication title. For complete titles and order numbers of
the publications for all products that are part of z/OS, see z/OS Information
Roadmap.

Information updates on the web
For the latest information updates that have been provided in PTF cover letters and
information APARs for z/OS®, see the online information at:
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/Shelves/ZDOCAPAR

This information is updated weekly and lists changes before they are incorporated
into z/OS publications.

© Copyright IBM Corp. 2011 ix

|

|
|
|
|
|
|

|
|
|

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/Shelves/ZDOCAPAR

The z/OS Basic Skills Information Center
The z/OS Basic Skills Information Center is a Web-based information resource
intended to help users learn the basic concepts of z/OS, the operating system that
runs most of the IBM mainframe computers in use today. The Information Center is
designed to introduce a new generation of Information Technology professionals to
basic concepts and help them prepare for a career as a z/OS professional, such as
a z/OS system programmer.

Specifically, the z/OS Basic Skills Information Center is intended to achieve the
following objectives:

v Provide basic education and information about z/OS without charge

v Shorten the time it takes for people to become productive on the mainframe

v Make it easier for new people to learn z/OS.

To access the z/OS Basic Skills Information Center, open your Web browser to the
following Web site, which is available to all users (no login required):
http://publib.boulder.ibm.com/infocenter/zos/basics/index.jsp

x

http://publib.boulder.ibm.com/infocenter/zoslnctr/v1r7/index.jsp

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or give us any other feedback that
you might have.

Use one of the following methods to send us your comments:

1. Send an email to mhvrcfs@us.ibm.com

2. Visit the Contact z/OS web page at http://www.ibm.com/systems/z/os/zos/
webqs.html

3. Mail the comments to the following address:
IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
U.S.A.

4. Fax the comments to us as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address
v Your email address
v Your telephone or fax number
v The publication title and order number:

z/OS V1R13.0 Batch Runtime Planning and User's Guide
SA23-2270-00

v The topic and page number related to your comment
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

IBM or any other organizations will only use the personal information that you
supply to contact you about the issues that you submit.

If you have a technical problem
Do not use the feedback methods listed above. Instead, do one of the following:

v Contact your IBM service representative

v Call IBM technical support

v Visit the IBM support portal at http://www.ibm.com/systems/z/support/

© Copyright IBM Corp. 2011 xi

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xii

Summary of Changes

This document contains terminology, maintenance, and editorial changes to improve
consistency and retrievability. Technical changes or additions to the text and
illustrations are indicated by a vertical line to the left of the change.

Changes made in z/OS Version 1 Release 13 (as of October 2011)
The book contains information that was previously presented in z/OS Batch
Runtime Planning and User's Guide, SA23-2270-00, which supports z/OS Version 1
Release 13.

Changed information:

v The level of Java required for z/OS Batch Runtime has been updated to Java
6.0.1 throughout this document, including updates to examples.

v Additional graphics and examples have been added throughout the document.

© Copyright IBM Corp. 2011 xiii

xiv

Chapter 1. Overview and planning of z/OS Batch Runtime

In today's z/OS environment, many installations want to re-engineer their existing
native z/OS COBOL applications to incorporate the Java language. By doing so,
they can keep their heritage of existing z/OS COBOL batch applications, while
taking advantage of the larger developer skill base and many language features of
Java. As such, there is a requisite need to share a local DB2 for z/OS attachment
across the Java and COBOL language boundary. This enables mixed language
programs to process DB2 for z/OS requests in the same unit of work (UOW). When
these batch application suites are re-engineered or updated, they should also allow
transparent local DB2 for z/OS access from both COBOL and Java to the following
programs:

v Embedded Structured Query Language (SQL) DB2 access, which is used in
Enterprise COBOL

v Java Database Connectivity (JDBC) for Dynamic SQL

v Embedded Structured Query Language for Java (SQLJ)

z/OS Batch Runtime allows for this interoperability between COBOL applications
and Java applications that run on z/OS. It is a program designed to provide a
managed environment that enables shared access to a DB2 connection by both
COBOL and Java programs. Updates to DB2 are committed in a single transaction.
(Note that updates to multiple databases are not supported.)

Figure 1 on page 2 shows a high-level overview of the z/OS Batch Runtime
environment. The batch container performs the initialization that sets up the
environment for COBOL, Java, and DB2 interoperability. This includes the following
tasks:

v Setting up the proper Language Environment® for the COBOL programs to run

v Setting up the job step under the umbrella of a Resource Recovery Services
(RRS)-managed global transaction

v Initiating the DB2 JDBC driver in this special “BatchContainer” mode

v Invoking the DB2 JDBC driver to create a DB2 connection and attachment thread

v Invoking the primary COBOL or Java application after the environment is properly
initialized.

© Copyright IBM Corp. 2011 1

|
|
|
|
|
|
|
|
|
|

|
|

|

|

|

|
|
|
|

|

|
|

|

|

|
|

Requirements for z/OS Batch Runtime
z/OS Batch Runtime requires the following programs:

v IBM 31-bit SDK for z/OS, Java Technology Edition, V6.0.1 (5655-R31) (For
details, see “Configuring Java” on page 5.

v IBM Enterprise COBOL Version 4.2

v One of the following:

– DB2 V9 with PTF UK62190 for JDBC 3.0 specification level, or PTF UK62191
for JDBC 4.0 specification level

– DB2 V10 with PTF UK62141 for JDBC 3.0 specification level, or PTF
UK62145 for JDBC 4.0 specification level

For more information about these required programs, see the appropriate reference
listed in Table 1.

Table 1. Summary of reference information for required programs

For information about Refer to

Java http://www.ibm.com/systems/z/os/zos/tools/java/

IBM Enterprise COBOL
Version 4 Release 2

http://www.ibm.com/software/awdtools/cobol/zos/library/

DB2 http://www.ibm.com/software/data/db2/zos/family/

z/OS Batch Runtime Topology

JES Single Step based

JES
BCDBATCH

Proc

Submit

JCL

JZOS JVM zOS Batch Container

Transaction

Service

Policy/logs

z/OS Batch

Container

Execution

Service

JDBC

Type 2

Local DB2

JAVA/Cobol App

//STEP EXEC PROC=BCDBATCH
//STEPLIB DD DSN=COBOL APPLIB
// DD DSN=DB2LIBS (or LNKLST)
// DD DSN=JZOSLIB (or LNKLST)
//BCDIN DD *

Language=JAVA | COBOL
Name= JavaClassName | COBOLAppName
Args1= ‘the COBOL EXEC PARM=Parm String ‘
Args2= more optional for JAVA only
…
Argsn= “
SupportClass.1=T2zosBatchContainer..

//STDENV DD *
JAVA_HOME>=JAVA 6.0.1 31 bit
CLASSPATH=bcdjar, jdbcjars,appljars
LIBPATH=bcdlib, jdbclib,applib(s)
IBM_JAVA_OPTIONS= -X, -D options for JVM, JDBC

/*

Commit

Rollback

z/OS Plug-inz/OS Plug -in

Process

Job Step

Key inputs

RRS shared attach

Figure 1. Overview of the z/OS Batch Runtime environment

Overview

2

|

|
|

|

|
|

||

||

||

|
|
|

||
|

http://www-01.ibm.com/software/awdtools/cobol/zos/library/

Planning for z/OS Batch Runtime
When planning use of z/OS Batch Runtime, a good application to consider using is
a native procedural z/OS COBOL application that you want to functionally enhance
with Java method calls. The entire application code must be single threaded. Also,
see Chapter 5, “Application structure and build considerations,” on page 25 for more
information.

Overview

Chapter 1. Overview and planning of z/OS Batch Runtime 3

|

|
|

4

Chapter 2. Invoking z/OS Batch Runtime

The z/OS Batch Runtime is established by launching the Java program
com.ibm.zos.batch.container.BCDBatchContainer with the proper configuration and
environment settings that allows your Java and COBOL programs to be invoked
with the correct arguments. The JZOS launcher, a component of the IBM JDK for
z/OS, is used to establish the environment and pass control to z/OS Batch Runtime
which, in turn, will launch your COBOL or Java program and provide necessary
services. To facilitate the use of z/OS Batch Runtime, z/OS includes:

v Environment tailoring shell scripts: bcdconfig.sh and bcdconfigend.sh in
/usr/lpp/bcp

v A JCL procedure to be invoked by batch jobs: BCDPROC in SYS1.PROCLIB

v A sample batch job to use BCDPROC: BCDBATCH in SYS1.SAMPLIB

Configuring Java
You must configure the CLASSPATH and LIBPATH variables with the list of Java
archive (JAR) files and dynamic link library (DLL) files that are required to run both
the z/OS Batch Runtime and the application. z/OS Batch Runtime is itself a Java
application and uses the JZOS toolkit to launch the JVM. You should tailor the z/OS
Batch Runtime sample BCDBATCH JCL and the environment variables it provides.

Additionally, JZOS defines several environment variables that allow you to control
the Java options that JZOS uses when it creates the JVM and main method
program arguments. Find these options and complete information in JZOS Batch
Launcher and Toolkit function in IBM SDK for z/OS, SA23-2245, at
www.ibm.com/systems/z/os/zos/tools/java/products/jzos/overview.html.

Note: Although JZOS also defines environment variables that allow you to control
the encoding of output, z/OS Batch Runtime only supports EBCDIC file encoding.

Improving Java start up time
For short-running jobs, improving Java start up time is important. This is especially
true when running numerous small Java batch jobs, as the Java start up elapsed
time and CPU time may affect performance. Using the following Java options can
make it possible to reduce the Java startup times for applications that frequently
start a new JVM :

v -Xquickstart Java option

Note: Quickstart may improve startup time for short running jobs, but it may
degrade performance of long running applications.

v Shared classes and AOT Java options

For more details about this topic as well as the latest considerations for using Java,
performance information, hints and tips, and information about developing and
running applications see:
http://www.ibm.com/systems/z/os/zos/tools/java

Java environment variables for z/OS Batch Runtime
Java applications use the following environment variables for z/OS Batch Runtime
that are specified in the JCL:

v JAVA_HOME

© Copyright IBM Corp. 2011 5

|
|
|
|
|
|
|

|
|

|

|

|
|

|
|
|
|
|

|
|

|

|
|
|

|

|
|

|

http://www-03.ibm.com/systems/z/os/zos/tools/java/products/jzos/overview.html
http://www-03.ibm.com/systems/z/os/zos/tools/java/faq/javafaq.html#jstart

v CLASSPATH

v LIBPATH

v IBM_JAVA_OPTIONS

See “Procedure for modifying the BCDBATCH job” on page 9 for examples of how
to specify these environment variables.

JAVA_HOME
The application must set the JAVA_HOME environment variable to a minimum level
of JAVA 6.0.1 and specify 31-bit only.

CLASSPATH
The application must set the CLASSPATH to include the .JAR files for z/OS Batch
Runtime, the DB2 driver for JDBC (DB2 JCC), and the application. To do so, use
the CLASSPATH environment variable specified in the BCDBATCH JCL procedure.

The configuration script automatically updates the CLASSPATH for z/OS Batch
Runtime .jar files, based on the exported BCD_HOME variable in the BCDBATCH
JCL procedure.

LIBPATH
In the BCDBATCH JCL procedure, the application must set LIBPATH to the location
of the DLLs for z/OS Batch Runtime, DB2 JCC, and any that are associated with
application. The configuration script performs the function.

IBM_JAVA_OPTIONS
This environment variable is a concatenation of the IBM JVM runtime options, which
are typically prefixed with -X, and any Java system properties, which are prefixed
with -D. This can include, for example, the JVM heap size runtime option and the
DB2 package list system property.

31-bit support
z/OS Batch Runtime supports only 31-bit applications; you must use the 31-bit JVM.

Main JCL statements needed for BCDBATCH
This section of the documentation uses reference keys, such as �1�, �2�, to match
the instructions with the sample JCL.

z/OS Batch Runtime supplies a sample BCDBATCH job which you modify to suit
your application. Table 2 summarizes the main JCL statements for the BCDBATCH
job. “Procedure for modifying the BCDBATCH job” on page 9 contains complete
steps to modifying the sample BCDBATCH job.

Table 2. JCL summary for BCDBATCH job

JCL statement Explanation

�1�

//BCDBATCH JOB (1),’name’
//BATCH EXEC BCDPROC,REGION=0M,LOGLVL=’+I’

The JCL that invokes z/OS Batch
Runtime. Throughout this
publication, the JCL used to
invoke the z/OS Batch Runtime is
referred to as the BCDBATCH job.
Use any job name that is
acceptable to your installation.

6

|

|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|

|

|

|
|
|
|

|

|
|
|
|
|
|
|

Table 2. JCL summary for BCDBATCH job (continued)

JCL statement Explanation

�2�

//*STEPLIB DD DSN=hlq.yourapp.loadlib,DISP=SHR
//* DD DSN=hlq.jzos.loadlib,DISP=SHR

Add any load libraries your
application requires to the
STEPLIB; for example, this could
be the data set containing your
COBOL application load modules.
If the JZOS Java launcher is not
installed in the LNKLST, add a
STEPLIB for it. For more
information about installing JZOS,
see the JZOS Java Launcher and
Toolkit Overview at
www.ibm.com/systems/z/os/zos/
tools/java/.

Any COBOL application modules
must be in either the //STEPLIB
concatenation or added to a
STEPLIB environment variable in
//STDENV DD *. Do not use
LIBPATH for starting a COBOL
application.

�3�

//STDENV DD *

Specifies the environment
variables used for this run,
including JAVA_HOME,
CLASSPATH, and LIBPATH.

//BCDIN DD * Specifies a file containing the
batch configuration options. Note
that some support elements
obtain their options from Java
system properties. See “JCL for
BCDIN configurations options” on
page 11 for more information.

JCL for the BCDBATCH job
A current sample of BCDBATCH job for z/OS Batch Runtime is in SYS1.SAMPLIB.
For convenience and planning purposes, this documentation contains the following
“Sample BCDBATCH JCL,” “Procedure for modifying the BCDBATCH job” on page
9, and “Sample BCDPROC to invoke z/OS Batch Runtime” on page 14.

Note: All examples in this publication are for illustration purposes only. You must
replace any example or code parameters with the correct specifications for your
installation.

Sample BCDBATCH JCL
Figure 2 on page 8 is an example of JCL procedure for running the sample
BCDBATCH job.

Chapter 2. Invoking z/OS Batch Runtime 7

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|

|
|

http://www-03.ibm.com/systems/z/os/zos/tools/java/
http://www-03.ibm.com/systems/z/os/zos/tools/java/

�1�
//BCDBATCH JOB (1),’name’
//BATCH EXEC BCDPROC,REGION=0M,LOGLVL=’+I’
//*
//***
//* Update: Add the load libraries your application requires, *
//* such as the data set containing your COBOL *
//* application load modules to the STEPLIB. *
//* *
//* If the JZOS Java launcher has not been installed in *
//* the lnklst, add a steplib for it. *
//***
�2�
//*STEPLIB DD DSN=hlq.yourapp.loadlib,DISP=SHR
//* DD DSN=hlq.jzos.loadlib,DISP=SHR
//*
//*
�3�
//STDENV DD *
#
#--
UPDATE: Installation path for Batch Runtime.
Note: because the Batch Runtime is a component of z/OS,
the installation defaults to /usr/lpp/bcp
#--
export BCD_HOME=/usr/lpp/bcp
#�4�
#--
UPDATE: Installation path for Java.
#--
export JAVA_HOME=/usr/lpp/java/J6.0.1
#
#�5�
#--
The following runs the z/OS Batch Runtime configuration script.
This script processes the exported environment variables that
were defined above.
#--
. $BCD_HOME/bcdconfig.sh
#
#�6�
#--
UPDATE: JDBC home directory, jar files, and DLLs.
#--
#JDBC_HOME=/usr/lpp/db2910_jdbc
#CLASSPATH="$CLASSPATH":$JDBC_HOME/classes/db2jcc.jar
#CLASSPATH="$CLASSPATH":$JDBC_HOME/classes/db2jcc_javax.jar
#export CLASSPATH="$CLASSPATH"
#
#LIBPATH="$LIBPATH":$JDBC_HOME/lib
#export LIBPATH="$LIBPATH"

Figure 2. Example: BCDBATCH JCL procedure (Part 1 of 2)

8

|

|
|

|

Procedure for modifying the BCDBATCH job
The following JCL procedure summarizes the key statements to modify in the
BCDBATCH job (see Figure 2 on page 8) that invokes z/OS Batch Runtime.

__ �1� Modify the JOB and EXEC statements to add any parameters required
by your installation.

#
#�7�
#--
UPDATE: Add your application jar files to the CLASSPATH here.
#--
#CLASSPATH="$CLASSPATH":/your/extra/app.jar
#CLASSPATH="$CLASSPATH":/your/extra/app2.jar
#export CLASSPATH="$CLASSPATH"
#
#�8�
#--
UPDATE: Add your application libraries to the LIBPATH here.
The LIBPATH defines points to any application-defined DLLs,
which may include Java Native Interface (JNI) routines.
#--
#LIBPATH="$LIBPATH":/your/extra/lib
#LIBPATH="$LIBPATH":/your/extra/lib2
#export LIBPATH="$LIBPATH"
#
#�9�
#--
UPDATE: Uncomment to enable z/OS Batch Runtime tracing for diagnosis.
#--
#IJO="$IJO -Dcom.ibm.zos.batch.container.BCDTraceConfig.trace=all"
#
#�10�
#--
UPDATE: Uncomment and add any additional JVM options here.
#--
#IJO="-Xms256m -Xmx512m"
#
#�11�
#--
UPDATE: Uncomment and add JDBC options here.
#--
#IJ0=$IJ0 -Ddb2.jcc.ssid=XXXX -Ddb2.jcc.pkList=NULLID.*,COBOLPKG.*"
#
#�12�
#--
Exports JVM options set above.
#--
export IBM_JAVA_OPTIONS="$IJO "
#
#�13�
#--
The following runs the z/OS Batch Runtime configuration completion
script. This command must be last in the STDENV file.
#--
. $BCD_HOME/bcdconfigend.sh
#
//

Figure 2. Example: BCDBATCH JCL procedure (Part 2 of 2)

Chapter 2. Invoking z/OS Batch Runtime 9

|
|

|

|

For example in the following statement, BCDPROC is the batch container JCL
procedure.
//BATCH EXEC BCDPROC,REGION=0M

For details and options, including the symbolic to override defaults, see
“Sample BCDPROC to invoke z/OS Batch Runtime” on page 14.

__ �2� For the STEPLIB statement, specify any load libraries that the application
requires (for example, the data set that contains your COBOL application
load modules) for DSN=, where hlq.yourapp.loadlib is the name:
//*STEPLIB DD DSN=hlq.yourapp.loadlib,DISP=SHR
// DD DSN=hlq.jzos.loadlib,DISP=SHR

This may include requisite DB2 and COBOL libraries that are not in LNKLST
but are loaded during program execution. Note that any COBOL modules that
are bound as DLLs should usually be found through the LIBPATH
environment variable.

The batch container uses the Java SDK JZOS launcher utility. If you installed
the Java SDK using SMP/E, JZOS is installed in the LNKLST. However, if
you did not use SMP/E, you must install the JZOS launcher into a data set,
and add that to your STEPLIB concatenation.

For more information about installing JZOS, see the JZOS Java Launcher
and Toolkit Overview at www.ibm.com/systems/z/os/zos/tools/java/

__ �3� Update the installation paths for z/OS Batch Runtime. To tailor the
runtime environment, use the //STDENV DD statement in the BCDBATCH JCL
to define a shell script. The batch container processes the exported BCD_HOME
environment variable referenced by the script as the installation path for z/OS
Batch Runtime (default is /usr/lpp/bcp).

__ �4� Update the installation path for Java to the correct level of Java:
export JAVA_HOME=/usr/lpp/java/J6.0.1

__ �5� Run the z/OS Batch Runtime configuration shell script, bcdconfig, to
process the exported environment variables you just defined:
. $BCD_HOME/bcdconfig.sh

To set up the batch container, you must use the . (dot) command to invoke
the bcdconfig.sh.

__ �6� Update the JDBC home directory, jar files, and DLLs:
JDBC_HOME=/usr/lpp/db2910_jdbc

__ �7� Add additional application jar files to the CLASSPATH:
CLASSPATH="$CLASSPATH":/your/extra/app.jar
#CLASSPATH="$CLASSPATH":/your/extra/app2.jar
#export CLASSPATH="$CLASSPATH"

__ �8� Add your application DLLs to the LIBPATH directories:
LIBPATH="$LIBPATH":/your/extra/lib
LIBPATH="$LIBPATH":/your/extra/lib2
export LIBPATH="$LIBPATH"

__ �9� Enable tracing for z/OS Batch Runtime:
IJO="$IJO -Dcom.ibm.zos.batch.container.BCDTraceConfig.trace=all

__ �10� Add any additional JVM options:
IJO="-Xms256m -Xmx512m"

You may add, for example, the -Xquickstart option or any other -D or -X JVM
runtime option you want to use.

__ �11� Add any additional JDBC options for the DB2 subsystem:
IJO="$IJO -Ddb2.jcc.ssid=XXXX -Ddb2.jcc.pkList=NULLID.*,COBOLPKG.*"

10

|

|
|
|
|

|

|
|

|

|
|

|

|

http://www-03.ibm.com/systems/z/os/zos/tools/java/

For more information about the Java Database Connectivity (JDBC) options,
see DB2 Application Programming Guide and Reference for Java or the
following Web site: http://publib.boulder.ibm.com/epubs/pdf/dsnjvm01.pdf

Do not specify -Dfile.encoding in the IBM_JAVA_OPTIONS string. z/OS Batch
Runtime only supports the default z/OS file.encoding of IBM-1047.

__ �12� Export the JVM options:
export IBM_JAVA_OPTIONS="$IJO "

The IBM_JAVA_OPTIONS string must be set and exported before invoking
the bcdconifgend.sh script.

__ �13� Run the following z/OS Batch Runtime completion script:
. $BCD_HOME/bcdconfigend.sh

Note: This script must always be run last in STDENV.

JCL for BCDIN configurations options
Use the //BCDIN JCL statement to control the z/OS Batch Runtime configuration
options. Some support elements obtain their options from Java system properties.

When creating a configuration options file, the following rules apply:

v Options must appear in the keyword=value format

v Options must be coded in columns 1 through 71 of the record. Long options can
be continued by coding a non-blank character in column 72 and continuing on
the next line.

v Comment lines contain a # in column one.

v Blank lines are ignored.

v Options are case sensitive.

v When you specify an option more than once, the last occurrence is used.

Sample BCDIN File
Figure 3 on page 12 shows an example file that contains additional details and
explanations. You can modify the sample as needed for individual jobs at your
installation.

Chapter 2. Invoking z/OS Batch Runtime 11

|
|
|

|
|

|
|

|

|
|
|

http://publib.boulder.ibm.com/epubs/pdf/dsnjvm01.pdf

//*
//***
//* *
//* Batch Runtime Options *
//* *
//* Syntax rules for specifying options: *
//* *
//* 1. Options are specified in keyword=value format. *
//* *
//* 2. Options are coded using columns 1-71. *
//* *
//* Long options may be continued by coding a non-blank *
//* character in column 72 and continuing on the next line. *
//* *
//* 3. Comment lines contain a # in column 1. *
//* *
//* 4. Blank lines are ignored. *
//* *
//* 5. Option names are case sensitive. *
//* *
//* 6. When the same option is specified more than once, *
//* the last occurrence of the option is used. *
//* *
//***
//*
//BCDIN DD *
#�1�
#---*
UPDATE: Uncomment the option corresponding to the language of
the application being launched
#---*
#bcd.applicationLanguage=COBOL
#bcd.applicationLanguage=JAVA
#
#�2�
#---*
UPDATE: The program name or fully qualified Java class name
of the application to be launched
#---*
bcd.applicationName=your.application.name

Figure 3. Example: JCL BCDIN configuration options (Part 1 of 2)

12

Procedure for modifying the BCDIN JCL
The following list summarizes the BCDIN JCL statements to use for configuring the
Batch Runtime options:

__ �1� Specify the option that corresponds to the language of the application.

For example, in COBOL:
bcd.applicationLanguage=COBOL

For example, in Java:
bcd.applicationLanguage=JAVA

__ �2� Specify the program name or fully qualified Java class name of the
application, where MYPGMNAM or yourpackagename is the name of the
application.

For example, in COBOL:
bcd.applicationName=MYPGMNAM

#
#�3�
#---*
UPDATE: Arguments to be passed to the launched application.
#
For Java applications, any number of arguments can be used.
Each argument is passed as an element of the initial
args array passed to the main method.
#
For COBOL applications, a single argument with a maximum
length of 100 characters can be used.
#---*
#bcd.applicationArgs.1=Java argument element 1
#bcd.applicationArgs.2=Java argument element 2
#bcd.applicationArgs.3=Java argument element 3
#
#bcd.applicationArgs.1=COBOL single argument up to 100 characters
#
#�4�
#---*
REQUIRED UPDATE: Support class names used to manage transactions.
#
For the DB2 JDBC driver, replace with the correct statement
for your installation.
If your application uses DB2 for z/OS, you MUST uncomment
this statement.
#
NOTE: A bcd.supportClass.1=class_name must be specified.
If you use the one provided by DB2, the DB2-related .jar
files and executables must be on the CLASSPATH and LIBPATH,
respectively.
#---*
#bcd.supportClass.1=com.ibm.db2.jcc.t2zos.T2zosBatchContainerSupport
#
#�5�
#---*
UPDATE: Verbose mode for additional diagnostics (default is false).
#---*
#bcd.verbose=true
#
//

Figure 3. Example: JCL BCDIN configuration options (Part 2 of 2)

Chapter 2. Invoking z/OS Batch Runtime 13

|
|
|
|
|
|

|
|
|
|

|

|

For example, in Java:
bcd.applicationName=com.xyz.yourpackagename.classname

__ �3� Specify the program arguments that you want to pass to the program.
Java and COBOL each have there own format.

For Java applications, you can use any number of arguments. Each
argument is passed as an element of the initial arguments array passed to
the main method. For example:
bcd.applicationArgs.1=java arg1
bcd.applicationArgs.2=java arg2
bcd.applicationArgs.3=java arg3

For COBOL applications, you can use a single argument with a maximum
length of 100 characters. For example:
bcd.applicationArgs.1=COBOL single argument up to 100 characters

The COBOL single argument... value corresponds to the PARM='string <=100
chars' value of an //EXECPGM EXEC PGM=Cobol_Main,PARM= JCL statement.

__ �4� Specify the name of the support class used to manage the transaction.
For example, the following statement for the DB2 JDBC driver should be
uncommented from Figure 3 on page 12.
bcd.supportClass.1=com.ibm.db2.jcc.t2zos.T2zosBatchRuntimeSupport

__ �5� Specify the verbose mode, using true or false.

If you want diagnostic information, use the following statement:
bcd.verbose=true

If you do not want verbose mode, use the following:
bcd.verbose=false

Sample BCDPROC to invoke z/OS Batch Runtime
Figure 3 on page 12 shows an example of a BCDPROC statement. You can use a
symbolic to override defaults on BCDPROC.

VERSION Specifies the Java SDK version (default 61).

LOGLVL Specifies the following JZOS trace level:

+I informational (default)

+T detail trace (used for additional diagnostics and debugging
//STDENV script)

LEPARM Allows for additional Language Environment options to be specified
by providing by a //CEEDOPTS DD statement. For more information,
see z/OS Language Environment Programming Reference .

Note: z/OS Batch Runtime only supports EBCDIC file encoding.

14

|
|
|

|

|
|
|

|

|

|
|
|

|

//BCDPROC PROC VERSION=’61’, JVMLDM version: 61 (Java 6.0.1 31bit)
// LOGLVL=’+I’, Debug level: +I(info) +T(trc)
// LEPARM=’’ Language Environment parms
//*
//***
//* *
//* Proprietary Statement: *
//* *
//* Licensed Materials - Property of IBM *
//* 5694-A01 *
//* Copyright IBM Corp. 2011. *
//* *
//* Status = HBB7780 *
//* *
//* Component = z/OS Batch Runtime (SC1BC) *
//* *
//* EXTERNAL CLASSIFICATION = OTHER *
//* END OF EXTERNAL CLASSIFICATION: *
//* *
//* Sample procedure JCL to invoke z/OS Batch Runtime *
//* *
//* Notes: *
//* *
//* 1. Override the VERSION symbolic parameter in your JCL *
//* to match the level of the Java SDK you are running. *
//* *
//* VERSION=61 Java SDK 6.0.1 (31 bit) *
//* *
//* 2. Override the LOGLVL symbolic parameter to control *
//* the messages issued by the jZOS Java launcher. *
//* *
//* Use the +T option when reporting problems to IBM or *
//* to diagnose problems in the STDENV script. *
//* *
//* 3. Override the LEPARM symbolic parameter to add any *
//* application specific language environment options *
//* needed. *
//* *
//* Change History = *
//* *
//* $L0=BATCH,HBB7780,100324,KDKJ: *
//* *
//* *
//***
//JAVA EXEC PGM=JVMLDM&VERSION,REGION=0M,
// PARM=’&LEPARM/&LOGLVL’
//*
//SYSPRINT DD SYSOUT=* System stdout
//SYSOUT DD SYSOUT=* System stderr
//STDOUT DD SYSOUT=* Java System.out
//STDERR DD SYSOUT=* Java System.err
//BCDOUT DD SYSOUT=* Batch container messages
//BCDTRACE DD SYSOUT=* Batch container trace
//*
//CEEDUMP DD SYSOUT=*
//*

Figure 4. Example: BCDPROC statement

Chapter 2. Invoking z/OS Batch Runtime 15

|

|

16

Chapter 3. Defining connectivity for the database

This chapter describes basic information about setting up the z/OS Batch Runtime
environment with the DB2 database and how the processing of transactions works
for requests from COBOL or Java applications.

Considerations for setting up z/OS Batch Runtime services for a
database resource

For the DB2 or database resource that z/OS Batch Runtime uses to make
connections for interoperability functions, the database must do the following:

v Initialize the z/OS Batch Runtime environment processing

v End the z/OS Batch Runtime environment processing

v Obtain notification of the start of a global transaction

v Obtain notification of the completion of a global transaction.

DB2 Java Database Connectivity (JDBC) and z/OS Batch Runtime
At startup, the z/OS Batch Runtime calls the Java Database Connectivity (JDBC)
driver for DB2 to establish a connection that can then be shared by the COBOL or
Java applications. The DB2 JDBC detects the mode of z/OS Batch Runtime and
creates the single physical attachment for processing applications. JDBC maintains
this application attachment for any connection requests that an application makes.
The COBOL and Java applications use the same "BatchRuntime" attachment to
access the DB2 resources.

Establishing a connection to DB2 from a COBOL application usually requires three
calls to the RRS Attach Facility (RRSAF):

v IDENTIFY

v SIGNON

v CREATE THREAD

Because the JDBC has created the DB2 resource attachment for the thread during
z/OS Batch Runtime initialization, the COBOL application must not code these
RRSAF calls to initialize or end a DB2 connection; otherwise, RRSAF fails the
request. z/OS Batch Runtime performs resource clean up after processing ends for
the request.

Transaction management and global transactions
z/OS Batch Runtime performs basic transaction management functions for the
application through the Java Transaction API (JTA). It can manage the COBOL or
Java application clients and can coordinate transaction management between itself
and the z/OS RRS transaction management services.

All transactions that run on z/OS Batch Runtime are considered global transactions.
z/OS Batch Runtime calls z/OS RRS to start a transaction to associate the
transaction with the calling thread before it invokes the COBOL or Java application.
The JDBC provides the following methods to perform transaction synchronization:

beforeCompletion Invoked before the transaction process starts

afterCompletion Invoked after the transaction is performed

© Copyright IBM Corp. 2011 17

|
|
|
|
|
|
|

The JDBC informs all of the active connections about the DB2 commit or rollback
events for consistency in processing database requests. You cannot initiate DB2
commit or rollback requests from the COBOL or Java applications themselves. For
this release, support for multiple resource managers is not available in z/OS Batch
Runtime.

Commit and rollback services of z/OS Batch Runtime
COBOL invokes Batch Runtime methods for commit and rollback. For COBOL
applications, z/OS Batch Runtime offers callable procedures for commit and rollback
of a transaction. Before committing the unit of work, z/OS Batch Runtime invokes
the beforeCompletion method on the JDBC to indicate the start of the commit. (This
in turn invokes the z/OS RRS Commit_UR service to commit the transaction.) After
the commit transaction is committed, z/OS Batch Runtime invokes the
afterCompletion method on the JDBC to indicate the completion of the commit.

Before processing the rollback transaction, z/OS Batch Runtime invokes the
beforeCompletion method on the JDBC to indicate the start of the rollback. (This in
turn invokes the z/OS RRS Backout_UR service to back out the transaction.) After
the rollback transaction is completed, z/OS Batch Runtime invokes the
afterCompletion method on the JDBC to indicate completion of the rollback

End-of-job clean up processing
If the applications complete with no issues, z/OS Batch Runtime commits any
outstanding transaction. z/OS Batch Runtime invokes the z/OS RRS
end_transaction service to clean up a global transaction. It rolls back any
outstanding global transaction and invokes the z/OS Resource Recovery Services
(RRS) end_transaction service to pass a rollback action. It also communicates the
start and completion of the transaction rollback process.

For additional information about RRS, see z/OS MVS Programming: Resource
Recovery for topics about:

v Using Resource Recovery Services

v Callable Resource Recovery Services.

Defining database connectivity

18

Chapter 4. Application interfaces for z/OS Batch Runtime

This section describes the following interfaces, considerations, and samples for
z/OS Batch Runtime:

v Configuration options. See “Configuration options reference.”

v Helper functions including commit and rollback in Java. See “Helper functions for
z/OS Batch Runtime” on page 21.

v Support elements for JDBC and DB2 communications. See“Support elements for
JDBC and DB2” on page 22.

v Java environment variables. See “Java environment variables for z/OS Batch
Runtime” on page 5.

v Language Environment considerations and restrictions for COBOL and Java
applications. See “Language Environment restrictions for z/OS Batch Runtime”
on page 22.

v Completion codes. See “Completion codes for z/OS Batch Runtime” on page 23.

v Code examples. See “Example: Java code calling COBOL” on page 31.

Configuration options reference
You can control z/OS Batch Runtime by using configuration options that you specify
on the //BCDIN JCL statement. This section provides reference information about
the supported input parameters. These keyword=value pairs are prefixed with 'bcd'.
For a description of the JCL conventions to specify options, see “JCL for BCDIN
configurations options” on page 11.

Configuration option types
As Table 3 shows, the syntax of a configuration option varies according to the
following types.

Table 3. Configuration option types

Type Description and Example Default

Keyword An option in keyword=value format. Values can contain embedded
blanks. Trailing blanks are removed.

bcd.applicationLanguage=COBOL

None

Stem An option you use to specify multiple values for the option. A
numeric suffix (the stem) is appended to the option name and
indicates the value number. A stem suffix must be numeric. Values
can be skipped and can appear in any order; however, z/OS Batch
Runtime processes the stem values in their numeric order.

bcd.supportClass.1=any.class.name

None

Configuration option names
The following options are read from the //BCDIN JCL file. The name, description,
and example of the option are provided.

bcd.applicationLanguage=language
Names the language of the application to be launched, where language is
either COBOL or JAVA.

© Copyright IBM Corp. 2011 19

|

|
|

Default
None; the statement is required and must be specified as COBOL or
JAVA.

Example

bcd.applicationLanguage=JAVA

bcd.applicationName=application-name
Names the fully qualified Java class or COBOL program name of the
application, where application-name is the name of the application.

For COBOL applications, application-name is a 1-8 character module name.
The z/OS Batch Runtime uses the typical z/OS LNKLST/STEPLIB search
order for locating the COBOL application.

For Java applications, application-name is the fully qualified class name.
The z/OS Batch Runtime uses the CLASSPATH environment variable to
locate the main() method of the specified classname.

Default
None

Example

bcd.applicationName=XMPCOBJX

bcd.applicationArgs.n=argument
Names an argument to be passed to the application, where n=argument
specifies the suffix number of the argument position.

For Java applications, each argument is passed as an element of the
argument array that is passed to the main method.

For COBOL applications, you can specify only one argument. The argument
can contain a maximum of 100 characters and is passed using the same
convention as the PARM= keyword of the // EXEC JCL statement.

Default
None

Example

bcd.applicationArgs.1=java arg1

bcd.supportClass.n=support-class-name
Names a support class to be used with z/OS Batch Runtime, where
n=support-class-name specifies a suffix number that indicates the order in
which the support class is invoked.

Default
None, but at least one support class is required.

Example

bcd.supportClass.1=com.ibm.db2.jcc.t2zos.T2zosBatchRuntimeSupport

Note: For DB2, the following support class is provided by the JDBC driver.
To use it, you must uncomment the following statement provided in the
sample BCDBATCH job.
com.ibm.db2.jcc.t2zos.T2zosBatchRuntimeSupport

bcd.verbose=value
Specifies the verbose mode for the batch runtime, where value is either
TRUE or FALSE. z/OS Batch Runtime generates additional diagnostics
when you specify TRUE for verbose mode and can affect performance.

Application interfaces

20

|

|
|

|
|

|

|

Default
FALSE

Example
bcd.verbose=true

Program arguments
You can pass program arguments to the COBOL or Java main application from
z/OS Batch Runtime.

For COBOL programs, you can pass a single argument in standard format as it is
specified on the PARM= keyword of the //EXEC JCL statement. The following
statement shows an example:
bcd.applicationArgs.1=This is PARM= main arg to Cobol

For Java programs, you can pass program arguments as a string array to the Java
main method, as shown in the following example; Java main methods accept this
as a variable length string array per the usual specified behavior:
bcd.applicationArgs.1=500
bcd.applicationArgs.2=string input 1
bcd.applicationArgs.3=My userid

You do not have to include a single quote (') in the string value you are passing.
Also, note that trailing blanks are not supported in the string.

Helper functions for z/OS Batch Runtime
As part of the interoperability commit and rollback database functions for COBOL
and Java applications, z/OS Batch Runtime provides helper functions to simplify the
processing.

For Java, methods for commit and rollback functions are available with the following
package:
com.ibm.batch.spi.UserControlledTransactionHelper

Java function for commit and rollback
The following class contains commit and rollback functions for Java applications:
com.ibm.batch.spi.UserControlledTransactionHelper

The class contains the following static methods that initiate the commit or rollback
process:

Commit UserControlledTransactionHelper.commit()

Rollback UserControlledTransactionHelper.rollback()

z/OS Batch Runtime uses z/OS Resource Recovery Services (RRS) to manage the
unit of work that is active across the Java and COBOL language boundary. All
commits and rollbacks must be managed by z/OS Batch Runtime; your applications
should not call commit and rollback directly. Rather, they should use helper
functions to call the functions. When your Java application needs to perform a
commit or rollback, you must call these helper functions to perform the function. For
COBOL applications, you can use the COBOL INVOKE statement to invoke these
helper methods.

Application interfaces

Chapter 4. Application interfaces for z/OS Batch Runtime 21

|
|

|

|
|
|
|
|
|
|
|

Direct use of JTA (Java transaction API) by Java programs is not allowed. Also, any
use of SQL COMMIT or ROLLBACK APIs by Java or COBOL will be rejected with
SQLSTATE = ’2D521 SQL COMMIT or ROLLBACK are invalid in the current
operating environment’. As such, Java programs should avoid setting the JDBC
autocommit connection option. See “Code examples” on page 31 for examples.

Support elements for JDBC and DB2
You can use a support element (also referred to as a support class) to allow z/OS
Batch Runtime to interoperate with a database or other resource manager.

For this release, the only support element is one that manages the JDBC driver that
communicates with DB2. The support element must implement the following
interface:
com.ibm.zos.zbatch.runtime.support.BCDBatchRuntimeSupport

This interface defines the following Java methods:

initializeBatchRuntimeEnv(Properties props)
Initializes z/OS Batch Runtime environment. Startup options are passed in
the properties object

terminateBatchRuntimeEnv()
Ends the z/OS Batch Runtime environment.

notifyNewGlobalTransaction(BCDTransaction transaction)
Informs the support element of a new global transaction. The support
element of this method calls the following, which z/OS Batch Runtime
implements:
transaction.registerSynchronization(BCDSynchronization sync)

getVersion()
Retrieves a string representation of the version of the support element for
diagnostic purposes. The content of the string is determined by the support
element.

Transaction and synchronization processing that are normally part of the J2EE
javax.transaction package are part of the following z/OS Batch Runtime package:
com.ibm.zos.batch.runtime.support.transaction

The classes for this package are called:

v BCDTransaction

v BCDSynchronization

In addition, a support element is required to implement a static getInstance()
method that returns an instance of the support element class. You must add any
.JAR files or DLLs to the CLASSPATH and LIBPATH in the BCDBATCH JCL. For
more details, see Chapter 2, “Invoking z/OS Batch Runtime,” on page 5.

Language Environment restrictions for z/OS Batch Runtime
Certain restrictions apply to COBOL and Java applications that use the Language
Environment in the z/OS Batch Runtime environment.

v COBOL applications must not use the STOP RUN statement. Using the option in
COBOL programs prevents the z/OS Batch Runtime environment from receiving
control. Instead, use the GOBACK statement to end the COBOL application.

Application interfaces

22

|
|
|
|
|

v COBOL will no longer be the first program entered. COBOL-specific runtime
options might be affected.

v Java applications must be single threaded and must not use the system.exit
method. Using the system.exit method ends the JVM and prevents the z/OS
Batch Runtime environment from receiving control. Instead, end the main Java
procedure with a simple return statement.

Completion codes for z/OS Batch Runtime
Upon completion, z/OS Batch Runtime processing returns the condition codes
shown in Table 4.

Table 4. Completion codes for z/OS Batch Runtime

Code Description

00 The processing has successfully completed.

08 The processing has launched the application, but the application has returned a
non-zero condition code. See the z/OS Batch Runtime messages in the job log
for errors.

12 An error occurred during z/OS Batch Runtime processing. See the z/OS Batch
Runtime messages in the job log for errors and z/OS MVS System Messages,
Vol 3 (ASB-BPX) for more information.

Application interfaces

Chapter 4. Application interfaces for z/OS Batch Runtime 23

|
|
|

Application interfaces

24

Chapter 5. Application structure and build considerations

The following sections describe considerations for how to structure and build your
applications when using z/OS Batch Runtime.

DLL considerations for COBOL and Java
In effort to simplify, some information from Enterprise COBOL for z/OS, V4R2,
Programming Guide, SC23-8529 is repeated in this section of the documentation.
For complete details, see Enterprise COBOL for z/OS, V4R2, Programming Guide
at http://publibfp.boulder.ibm.com/epubs/pdf/igy3pg50.pdf

It is important to recognize the structural implications to COBOL source files when
they are calling out to Java. In particular, you need DLL and RECURSIVE on
COBOL classes and methods or on COBOL programs that invoke Java methods.

To compile COBOL source code that contains OO syntax, such as INVOKE
statements or class definitions, or that use Java services, you must use these
compiler options:

v RENT

v DLL

v THREAD

Any programs that you compile with the THREAD compiler option must be
recursive. You must specify the recursive clause in the PROGRAM-ID paragraph of
each OO COBOL client program. This can affect the overall COBOL program
structure because a program compiled with a DLL cannot make a traditional
COBOL dynamic call. It can, however, be statically linked with and call into another
COBOL program compiled dynamic. This separate but statically linked program can
then use a traditional dynamic call to other external COBOL modules with built
dynamic programs.

In general, DLL linkage built COBOL programs can only call out to other external
DLL linkage built programs. Similarly, dynamic call built COBOL programs can only
call out to other external dynamic call built programs. However, static linking of
objects with either two of these external program call mechanisms is allowed. This
provides the bridging between the DLL linkage that Java requires and the traditional
COBOL dynamic call.

For additional details, see the topic about "Using DLL linkage and dynamic calls
together " in Enterprise COBOL for z/OS, V4R2, Programming Guide.

Example of a COBOL COMMIT wrapper
Figure 5 on page 26 is a simple example of a COBOL COMMIT wrapper that, while
compiled with the DLL option required for Java, can be statically linked with a main
non-DLL application module. In this example, a procedural COBOL program invokes
a Java method. Only the non-DLL module objects that need to call the new
COMMIT function need to be recompiled. You can also perform a similar function
for ROLLBACK.

© Copyright IBM Corp. 2011 25

|
|

|
|
|

|
|
|

http://publibfp.boulder.ibm.com/epubs/pdf/igy3pg50.pdf

*--
*
* Program Name : COBCOMIT
* Objective : Call RSS global commit via batch container
*
*--
IDENTIFICATION DIVISION.
PROGRAM-ID. "COBCOMIT" IS RECURSIVE.

/
ENVIRONMENT DIVISION.
*--------------------
CONFIGURATION SECTION.
REPOSITORY.

Class JavaException is "java.lang.Exception"
Class UserControlledTransaction is

"com.ibm.batch.spi.UserControlledTransactionHelper".
INPUT-OUTPUT SECTION.
FILE-CONTROL.

DATA DIVISION.
FILE SECTION.

WORKING-STORAGE SECTION.
01 ex object reference JavaException.

LINKAGE SECTION.
01 RETCODE PIC S9(9) USAGE IS BINARY.
COPY JNI.

PROCEDURE DIVISION RETURNING RETCODE.
*--
*
* Test batch cobol commit.
*
*--
PROGRAM-BEGIN.

SET ADDRESS OF JNIENV TO JNIENVPTR
SET ADDRESS OF JNINATIVEINTERFACE TO JNIENV
Display "Calling into Java commit"
Invoke UserControlledTransaction "commit"
Display "Returned from Java commit"
Perform ErrorCheck
Goback
.

PROGRAM-END.
GOBACK.

* need to perform exception check / stack trace at this point ?

ErrorCheck.
Compute RETCODE = 0
Call ExceptionOccurred

using by value JNIEnvPtr
returning ex

If ex not = null then
Call ExceptionClear using by value JNIEnvPtr
Display "Caught an unexpected exception"
Invoke ex "printStackTrace"
Compute RETCODE = 99

End-if
.

End program "COBCOMIT".

Figure 5. Example: COBOL COMMIT wrapper

26

Figure 6 shows an example of the JCL that would be needed to compile the
COMMIT wrapper shown in Figure 5 on page 26.

Examples of program structures
This section demonstrates several types of program structures and interaction
between COBOL, Java, and z/OS Batch Runtime.

Figure 7 on page 28 shows an overview of a COBOL program that interacts with a
Java program. In this example, the program flow starts in COBOL and then flows to
a Java program and to another COBOL program. OOCOBOL methods are not
used; however, the programs use both COBOL JNI and user JNI.

//COMPCMIT JOB ,’STEVE PROGRAM ’,
// NOTIFY=&SYSUID,
// MSGCLASS=X,
// CLASS=A,
// REGION=0M,
// TIME=120
//COMPILE EXEC IGYWC,LNGPRFX=’SYSPROG.MNT.COBOL42’,
// COND=(4,LT),
// PARM.COBOL=(NOSEQUENCE,RENT,LIB,THREAD,
// NODYNAM,DLL)
//COBOL.SYSLIB DD DSN=SUIMGJB.PRIVATE.JNI.COPY,
// DISP=SHR
//COBOL.SYSIN DD DSN=SUIMGJB.PRIVATE.DOCXMP.COBOL(COBCOMIT),
// DISP=SHR
//COBOL.SYSLIN DD DSN=SUIMGJB.PRIVATE.COBOL.OBJ(COBCOMIT),
// DISP=SHR
//

Figure 6. Example: JCL used to compile COMMIT wrapper

Chapter 5. Application structure and build considerations 27

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|

|
|

|
|
|
|
|

In Figure 8, a Java program flows to a COBOL program. In this example, the Java
program uses an OOCOBOL factory wrapper to call COBOL.

z/OS Batch Runtime

Launch
COBOL Provided

JAVA JNI
Capabilities

COBOLA

“replace SQL Commit”
Sql1

Sql2
Sql3

Call COBOL C’

Call COBCMIT
Call COBOL B

COBOLB

invoke Java
Class D method1

COBOLC’

Call COBOL C

COBCOMIT

Invoke Java
TransactionHelper

Procedural

COBOLC
unmodified

Sql4

Sql5

Business Logic

Sql6

Go Back

Java

CLASSD

Method1
JDBC or SQLJ

getConnection(db2,default

..

Sql7

Sql8

Sql9

TransactionHelper

.commit()

z/OS Batch Runtime

JAVA Transaction Callbacks

COBOLA is
NoDynamic,NoDll

COBCOMIT

& COBOLB are
compiled DLL

COBOL C & C’ are

compiled Dynamic

COBOLA, B, C’
COBCOMIT

Linked as DLL module

COBOLC “asis”

Figure 7. Example: COBOL program calling Java and unmodified COBOL

z/OS Batch Runtime

Launch

OOCOBOL

CLASSB
DLL compiled

Factory

Method1

“wrapper”
Call COBOLC

Java

CLASSA
.

Method1
[main]

CLASSB.Method1

..

DB2 through jdbc/sqlj

TransactionHelper
Commit()

Procedural

COBOLC
Dynam compiled

Sql1

Sql2

Sql3
Call COBOLD

Binder static linkage

Procedural

COBOLD

“unmodified”

Sql4

Sql5

Sql6

Go back

Traditional Dynamic

Call

z/OS Batch Runtime
Java Transaction Helper

Callbacks

COBOL Provided
Java JNI

Capabilities

Figure 8. Example: Java program using OOCOBOL to call COBOL

28

|

|
|

|

|
|

|
|
||

Building programs: compile and link JCL examples
For complete documentation about building COBOL applications, including Object
Oriented (OO) COBOL, see Enterprise COBOL for z/OS, V4R2, Programming
Guide.

For compiling with JCL, IBM provides a set of cataloged procedures to reduce the
amount of JCL coding that you need to write. If the cataloged procedures do not
meet your needs, you can write your own JCL. Using JCL, you can compile a single
program or compile several programs as part of a batch job. See Chapter 2,
“Invoking z/OS Batch Runtime,” on page 5 for more information.

The compiler translates your COBOL program into language that the computer can
process (object code). The compiler also lists errors in your source statements and
provides supplementary information to help you debug and tune your program. Use
compiler-directing statements and compiler options to control your compilation. After
compiling your program, you need to review the results of the compilation and
correct any compiler-detected errors.

To build Java programs, use the javac command to create the classes and the jar
command for packaging. This documentation focuses on building a typical use case
that updates a traditional COBOL program to call out to Java methods in which
either or both can use DB2.

The JCL example shown in Figure 9 on page 30 is a modification of a sample
COBOL DB2 phone program that ships as part of IBM DB2 for z/OS. This program
is typically found in hlq.sdsnsamp(DSN8BC3) and is often used in the DB2 installation
verification program (IVP). The COBOL source is modified to invoke a simple Java
"Hello World" method that also selects rows from the DB2 catalog using the
SYSIBM schema. The following are implications on the DB2 provided COBOL build
procedure to run in the z/OS Batch Runtime container:

v The Language Environment Runtime library CEE.SCEERUN must be in the
JOBLIB for the Java JNI support.

v The ATTACH(RRSAF) must be in the preprocessor portion of the catalogued
procedure. Although optional, this forces the generation of RRS attach entry point
at compile time. Omit this option for attach-neutral code generation. The z/OS
Batch Runtime requires the use of RRS attach to be bound at compile (as in this
example), link (include DSNRLI), or runtime (include DSNULI).

v The use of Java from COBOL source requires the compile options
RENT,DLL,THREAD.

v The long names required for the Java JNI imply use of PDSE libraries by the
binder (rather than traditional PDS load libraries).

v The input to the Binder requires both the Enterprise COBOL Java linkage and
JNI export (*.x) files.

Chapter 5. Application structure and build considerations 29

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|

|

//COBBUILD JOB (MOP,1458),’STEVE’,CLASS=A,REGION=0M,
// MSGLEVEL=(1,1),MSGCLASS=X,TIME=1440,NOTIFY=&SYSUID
//*
//**
//* NAME = DSNTEJ2C -- MODIFIED FOR RRS AND Java BATCH CONTAINER RUN *
//* BUILD ONLY WITH APP CALL TO JAVA *
//* DESCRIPTIVE NAME = DB2 SAMPLE APPLICATION W CALL TO JAVA *
//* PHASE 2 *
//* COBOL *
//* *
//* LICENSED MATERIALS - PROPERTY OF IBM *
//* 5635-DB2 *
//* (C) COPYRIGHT 1982, 2006 IBM CORP. ALL RIGHTS RESERVED. *
//* *
//* STATUS = VERSION 9 *
//* *
//* FUNCTION = THIS JCL PERFORMS THE PHASE 2 COBOL SETUP FOR THE *
//* SAMPLE APPLICATIONS. IT PREPARES AND EXECUTES *
//* COBOL BATCH PROGRAMS. *
//* *
//* THIS JOB IS RUN AFTER PHASE 1. *
//* *
//* *
//* CHANGE ACTIVITY = *
//* *
//**
//JOBLIB DD DISP=SHR,DSN=DSN910.NEWFUNC.SDSNEXIT
// DD DISP=SHR,DSN=DSN910.SDSNLOAD
// DD DISP=SHR,DSN=CEE.SCEERUN
//*
//* PREPARE COBOL PHONE PROGRAM
//PH02CS03 EXEC DSNHNCOB,MEM=XMPCOBJV,
// COND=(4,LT),
// PARM.PC=(’HOST(IBMCOB)’,APOST,APOSTSQL,SOURCE,
// NOXREF,’SQL(DB2)’,’DEC(31)’,’ATTACH(RRSAF)’),
// PARM.COB=(NOSEQUENCE,LIB,QUOTE,RENT,’PGMNAME(LONGUPPER)’,
// DLL,THREAD)
//PC.DBRMLIB DD DSN=DSN910.DBRMLIB.DATA(XMPCOBJV),
// DISP=SHR
//PC.SYSLIB DD DSN=SUIMGJB.PRIVATE.DSN910.SRCLIB.DATA,
// DISP=SHR
//PC.SYSIN DD DSN=SUIMGJB.PRIVATE.JCL.CNTL(XMPCOBJV),
// DISP=SHR
//COB.SYSLIB DD DSN=SUIMGJB.PRIVATE.JNI.COPY,
// DISP=SHR
//LKED.SYSLMOD DD DSN=SUIMGJB.PRIVATE.LIBRARY(XMPCOBJV),
// DISP=SHR
//LKED.RUNLIB DD DSN=DSN910.RUNLIB.LOAD,
// DISP=SHR
//LKED.SYSIN DD *

INCLUDE SYSLIB(DSNRLI)
INCLUDE RUNLIB(DSN8MCG)
INCLUDE ’/home/cob42/cobol/lib/igzcjava.x’
INCLUDE ’/usr/lpp/java/J6.0/lib/s390/j9vm/libjvm.x’

//

Figure 9. Example: JCL for COBOL DB2 phone program

30

|

|

|

|

Code examples
This section contains the following code examples:

v “Example: Java code calling COBOL”

v “Example: C DLL calling COBOL from Java” on page 33

v “Example: COBOL code invoking Java” on page 33

Example: Java code calling COBOL
Figure 10 shows an example of Java code calling COBOL.

package com.ibm.zos.batch.container.test;

import java.sql.*;
import com.ibm.batch.spi.UserControlledTransactionHelper;
import com.ibm.ws.gridcontainer.exceptions.TransactionManagementException;

public class Sample
{

//Native method declaration
private native int CallCOBOL();
//Load the library
static {
System.loadLibrary("c_to_cobol");

}

public static void main(String[] args)
{
Connection conn = DriverManager.getConnection(url);

String url = "jdbc:default:connection";

Statement stmt;
int maxRows = 25;
String pnumber = "";
int pnum = 0;
int rc = 0;
String formatted;

try
{

System.out.println ("Establishing Connection to URL: " + url);

conn = DriverManager.getConnection(url);
System.out.println (" successful connect");
stmt = conn.createStatement();
System.out.println (" Successful creation of Statement");
// Limit the number of rows to return
stmt.setMaxRows (maxRows);

Figure 10. Example: Java code calling COBOL (Part 1 of 2)

Chapter 5. Application structure and build considerations 31

|
|

|

// SELECT from an DB2 sample table
String sqlText =
"SELECT PHONENUMBER " +
"FROM DSN8910.VEMPLP " +
"WHERE EMPLOYEENUMBER = ’000260’";
ResultSet results = stmt.executeQuery (sqlText);
pnumber = results.getString ("PHONENUMBER");
pnum = Integer.parseInt(pnumber.trim());
pnum++;
pnum = pnum % 10000;
formatted = String.format("%04d", pnum);

sqlText =
"UPDATE DSN8910.VEMPLP " +
" SET PHONENUMBER = " + "’"+formatted+"’" +
" WHERE EMPLOYEENUMBER = ’000260’ ";
int updateCount = stmt.executeUpdate(sqlText);
System.out.println ("Successful execution of UPDATE. Rows updated= " + updateCount);

// close ResultSet and Statement
results.close();
// Call COBOL via a C DLL
Sample call_cobol = new Sample();
//Call native method
rc = call_cobol.CallCOBOL();
System.out.println ("Returned from COBOL with a rc: " + rc);

if (rc == 0)
{

try
{

UserControlledTransactionHelper.commit();
}
catch (TransactionManagementException e)
{

e.printStackTrace();
}

}
else

{
try
{

UserControlledTransactionHelper.rollback();
}
catch (TransactionManagementException e)
{

e.printStackTrace();
}

}
}
catch (SQLException ex)

{
System.out.println("SQLException information");
while(ex!=null) {
System.err.println ("Error msg: " + ex.getMessage());
System.err.println ("SQLSTATE: " + ex.getSQLState());
System.err.println ("Error code: " + ex.getErrorCode());
ex.printStackTrace();
ex = ex.getNextException();

}
}

}
}

Figure 10. Example: Java code calling COBOL (Part 2 of 2)

32

|

Example: C DLL calling COBOL from Java
The example in Figure 11 shows the C interface DLL to use when calling COBOL.

Example: COBOL code invoking Java
Figure 12 on page 34 is an example of a modified DB2 sample phone application
that uses COBOL code to invoke the "sayHello" Java method. Descriptions for each
of the code blocks precede the example.

Figure 12 on page 34 includes changes that were made in the sample program to
provide an interface to Java. These changes are highlighted and are located in the
following areas of the example:

�A� Identification Division

�B� Environment Division

�C� Linkage Section

�D� Main Program Routine

�E� Updates Phone Numbers For Employees

�F� Perform Rollback

�G� Java Exception Check

Note: This sample was provided by DB2 , typically in hlq.sdsnsamp(DSN8BC3). For
more details, see http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/
topic/com.ibm.db29.doc/db2prodhome.htm

/ c99 -o libc_to_cobol.so -Wc,exportall -Wl,
dll -I/usr/lpp/java/J6.0.1/include

-I/usr/lpp/java/J6.0.1/include/zos c_to_cobol.c

#include <jni.h>
#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>
#include "com_ibm_zos_batch_container_test_Java_Calls_Cobol.h"

void (*fetch(const char *name))();
typedef void cfunc();

JNIEXPORT jint JNICALL
Java_com_ibm_zos_batch_container_test_Java_1Calls_1Cobol_CallCOBOL(JNIEnv * jenv, jobject jobj)
{
cfunc *cobfetch_ptr;
cobfetch_ptr = (cfunc *) fetch("XMPCOBJ3"); // loads fetched module
if (cobfetch_ptr == NULL){

printf("\tfetch failed\n");
}
else
{

printf("\tShould be going off to COBOL\n\n");
(*cobfetch_ptr)(); // sets up the proper linkage for the call

}

return(0);
}

Figure 11. Example: C interface DLL for calling COBOL from Java

Chapter 5. Application structure and build considerations 33

|

|

|
|
|

||

||

||

||

||

||

||

|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc/db2prodhome.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc/db2prodhome.htm

IDENTIFICATION DIVISION.
*-----------------------

�A� PROGRAM-ID. DSN8BC3 RECURSIVE.

****** DSN8BC3 - DB2 SAMPLE PHONE APPLICATION - COBOL - BATCH ***
* *
* MODULE NAME = DSN8BC3 *
* *
* DESCRIPTIVE NAME = DB2 SAMPLE APPLICATION *
* PHONE APPLICATION *
* BATCH *
* COBOL *
* *
*LICENSED MATERIALS - PROPERTY OF IBM *
*5695-DB2 *
*(C) COPYRIGHT 1982, 1995 IBM CORP. ALL RIGHTS RESERVED. *
* * *---*
/

ENVIRONMENT DIVISION.
*--------------------
CONFIGURATION SECTION.
SPECIAL-NAMES. C01 IS TO-TOP-OF-PAGE.
REPOSITORY.

�B� Class HelloJ is
"com.ibm.zos.batch.container.test.HelloJ"
Class JavaException is "java.lang.Exception"
Class BCDTranHelper is
"com.ibm.batch.spi.UserControlledTransactionHelper".
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT CARDIN
ASSIGN TO DA-S-CARDIN.
SELECT REPOUT
ASSIGN TO UT-S-REPORT.

DATA DIVISION.
*-------------
FILE SECTION.
FD CARDIN
RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 0 RECORDS
LABEL RECORDS ARE OMITTED.
01 CARDREC PIC X(80).

FD REPOUT
RECORD CONTAINS 120 CHARACTERS
LABEL RECORDS ARE OMITTED
DATA RECORD IS REPREC.
01 REPREC PIC X(120).

Figure 12. Example: COBOL DB2 phone application that invokes Java under z/OS Batch
Runtime (Part 1 of 10)

34

/
WORKING-STORAGE SECTION.

* STRUCTURE FOR INPUT *

01 IOAREA.
02 ACTION PIC X(01).
02 LNAME PIC X(15).
02 FNAME PIC X(12).
02 ENO PIC X(06).
02 NEWNO PIC X(04).
02 FILLER PIC X(42).

01 ex object reference JavaException.

* REPORT HEADER STRUCTURE *

01 REPHDR1.
02 FILLER PIC X(29)
VALUE ’-----------------------------’.
02 FILLER PIC X(21)
VALUE ’ TELEPHONE DIRECTORY ’.
02 FILLER PIC X(29)
VALUE ’-----------------------------’.
01 REPHDR2.
02 FILLER PIC X(09) VALUE ’LAST NAME’.
02 FILLER PIC X(07) VALUE SPACES.
02 FILLER PIC X(10) VALUE ’FIRST NAME’.
02 FILLER PIC X(03) VALUE SPACES.
02 FILLER PIC X(08) VALUE ’INITIAL’.
02 FILLER PIC X(07) VALUE ’PHONE’.
02 FILLER PIC X(09) VALUE ’EMPLOYEE’.
02 FILLER PIC X(05) VALUE ’WORK’.
02 FILLER PIC X(04) VALUE ’WORK’.
01 REPHDR3.
02 FILLER PIC X(37) VALUE SPACES.
02 FILLER PIC X(07) VALUE ’NUMBER’.
02 FILLER PIC X(09) VALUE ’NUMBER’.
02 FILLER PIC X(05) VALUE ’DEPT’.
02 FILLER PIC X(05) VALUE ’DEPT’.
02 FILLER PIC X(04) VALUE ’NAME’.

* REPORT STRUCTURE *

01 REPDATA.
02 RLNAME PIC X(15).
02 FILLER PIC X(01) VALUE SPACES.
02 RFNAME PIC X(12).
02 FILLER PIC X(04) VALUE SPACES.
02 RMIDINIT PIC X(01).
02 FILLER PIC X(04) VALUE SPACES.
02 RPHONE PIC X(04).
02 FILLER PIC X(03) VALUE SPACES.
02 REMPNO PIC X(06).
02 FILLER PIC X(03) VALUE SPACES.
02 RDEPTNO PIC X(03).
02 FILLER PIC X(02) VALUE SPACES.
02 RDEPTNAME PIC X(36).

Figure 12. Example: COBOL DB2 phone application that invokes Java under z/OS Batch
Runtime (Part 2 of 10)

Chapter 5. Application structure and build considerations 35

* WORKAREAS *

01 LNAME-WORK.
49 LNAME-WORKL PIC S9(4) COMP.
49 LNAME-WORKC PIC X(15).
01 FNAME-WORK.
49 FNAME-WORKL PIC S9(4) COMP.
49 FNAME-WORKC PIC X(12).
77 INPUT-SWITCH PIC X VALUE ’Y’.
88 NOMORE-INPUT VALUE ’N’.
77 NOT-FOUND PIC S9(9) COMP VALUE +100.

* VARIABLES FOR ERROR-HANDLING *

01 ERROR-MESSAGE.
02 ERROR-LEN PIC S9(4) COMP VALUE +960.
02 ERROR-TEXT PIC X(120) OCCURS 10 TIMES
INDEXED BY ERROR-INDEX.
77 ERROR-TEXT-LEN PIC S9(9) COMP VALUE +120.

77 W09-WAIT-TIME PIC S9(8) COMP VALUE 0005.
77 W09-RESPONSE PIC S9(8) COMP VALUE 0000.

* SQL INCLUDE FOR SQLCA *

EXEC SQL INCLUDE SQLCA END-EXEC.

* SQL DECLARATION FOR VIEW VPHONE *

EXEC SQL DECLARE DSN8910.VPHONE TABLE
(LASTNAME VARCHAR(15) NOT NULL,
FIRSTNAME VARCHAR(12) NOT NULL,
MIDDLEINITIAL CHAR(01) NOT NULL,
PHONENUMBER CHAR(04) ,
EMPLOYEENUMBER CHAR(06) NOT NULL,
DEPTNUMBER CHAR(03) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL)
END-EXEC.

* STRUCTURE FOR PHONE RECORD *

01 PPHONE.
02 LASTNAME.
49 LASTNAMEL PIC S9(4) COMP.
49 LASTNAMEC PIC X(15) VALUE SPACES.
02 FIRSTNAME.
49 FIRSTNAMEL PIC S9(4) COMP.
49 FIRSTNAMEC PIC X(12) VALUE SPACES.
02 MIDDLEINITIAL PIC X(01).
02 PHONENUMBER PIC X(04).
02 EMPLOYEENUMBER PIC X(06).
02 DEPTNUMBER PIC X(03).
02 DEPTNAME.
49 DEPTNAMEL PIC S9(4) COMP.
49 DEPTNAMEC PIC X(36) VALUE SPACES.
*
77 PERCENT-COUNTER PIC S9(4) COMP.

Figure 12. Example: COBOL DB2 phone application that invokes Java under z/OS Batch
Runtime (Part 3 of 10)

36

* SQL DECLARATION FOR VIEW VEMPLP *

EXEC SQL DECLARE DSN8910.VEMPLP TABLE
(EMPLOYEENUMBER CHAR(06) NOT NULL,
PHONENUMBER CHAR(04))
END-EXEC.

* SQL CURSORS *

*** CURSOR LISTS ALL EMPLOYEE NAMES

EXEC SQL DECLARE TELE1 CURSOR FOR
SELECT *
FROM DSN8910.VPHONE
END-EXEC.

*** CURSOR LISTS ALL EMPLOYEE NAMES WITH A PATTERN (%) OR (_)
*** FOR LAST NAME

EXEC SQL DECLARE TELE2 CURSOR FOR
SELECT *
FROM DSN8910.VPHONE
WHERE LASTNAME LIKE :LNAME-WORK
AND FIRSTNAME LIKE :FNAME-WORK
END-EXEC.

*** CURSOR LISTS ALL EMPLOYEES WITH A SPECIFIC
*** LAST NAME

EXEC SQL DECLARE TELE3 CURSOR FOR
SELECT *
FROM DSN8910.VPHONE
WHERE LASTNAME = :LNAME
AND FIRSTNAME LIKE :FNAME-WORK
END-EXEC.
/
/**
* FIELDS SENT TO MESSAGE ROUTINE *

01 MAJOR PIC X(07) VALUE ’DSN8BC3’.

01 MSGCODE PIC X(4).

01 OUTMSG PIC X(69).

01 MSG-REC1.
02 OUTMSG1 PIC X(69).
02 RETCODE PIC S9(9).

01 MSG-REC2.
02 OUTMSG2 PIC X(69).

�C� LINKAGE SECTION.
COPY JNI.

PROCEDURE DIVISION.
*------------------

Figure 12. Example: COBOL DB2 phone application that invokes Java under z/OS Batch
Runtime (Part 4 of 10)

Chapter 5. Application structure and build considerations 37

* SQL RETURN CODE HANDLING *

EXEC SQL WHENEVER SQLERROR GOTO DBERROR END-EXEC.
EXEC SQL WHENEVER SQLWARNING GOTO DBERROR END-EXEC.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.

* MAIN PROGRAM ROUTINE *

PROG-START.
MOVE 0 to RETURN-CODE.
SET ADDRESS OF JNIENV TO JNIENVPTR
SET ADDRESS OF JNINATIVEINTERFACE TO JNIENV

�D� Invoke HelloJ "sayHello"
Display "Returned from Java sayHello to MAIN"
Perform ErrorCheck
* **OPEN FILES
OPEN INPUT CARDIN
OUTPUT REPOUT.

* **GET FIRST INPUT
READ CARDIN RECORD INTO IOAREA
AT END MOVE ’N’ TO INPUT-SWITCH.

* **MAIN ROUTINE
PERFORM PROCESS-INPUT
UNTIL NOMORE-INPUT.
PROG-END.
* **CLOSE FILES
CLOSE CARDIN
REPOUT.

GOBACK.

* CREATE REPORT HEADING *
* SELECT ACTION *

PROCESS-INPUT.
* **PRINT HEADING
WRITE REPREC FROM REPHDR1
AFTER ADVANCING TO-TOP-OF-PAGE.
WRITE REPREC FROM REPHDR2
AFTER ADVANCING 2 LINES.
WRITE REPREC FROM REPHDR3.

* **SELECT ACTION
IF ACTION = ’L’
PERFORM LIST-FUNCTION
ELSE
IF ACTION = ’U’
PERFORM TELEPHONE-UPDATE

Figure 12. Example: COBOL DB2 phone application that invokes Java under z/OS Batch
Runtime (Part 5 of 10)

38

ELSE
* **INVALID REQUEST
* **PRINT ERROR MESSAGE
MOVE ’068E’ TO MSGCODE
CALL ’DSN8MCG’ USING MAJOR MSGCODE OUTMSG
MOVE OUTMSG TO OUTMSG2
WRITE REPREC FROM MSG-REC2
AFTER ADVANCING 2 LINES.
READ CARDIN RECORD INTO IOAREA
AT END MOVE ’N’ TO INPUT-SWITCH.
/

* DETERMINE FORM OF NAME USED TO LIST EMPLOYEES *

LIST-FUNCTION.
* **NO LAST NAME GIVEN
IF LNAME = SPACES
MOVE ’%’ TO LNAME.
* **NO FIRST NAME GIVEN
IF FNAME = SPACES
MOVE ’%’ TO FNAME.
* **LIST ALL EMPLOYEES
IF LNAME = ’*’
PERFORM LIST-ALL
ELSE
* **UNSTRING LAST NAME
UNSTRING LNAME
DELIMITED BY SPACE
INTO LNAME-WORKC
COUNT IN LNAME-WORKL
* **UNSTRING FIRST NAME
UNSTRING FNAME
DELIMITED BY SPACE
INTO FNAME-WORKC
COUNT IN FNAME-WORKL
* **COUNT %’S
MOVE ZERO TO PERCENT-COUNTER
INSPECT LNAME
TALLYING PERCENT-COUNTER FOR ALL ’%’
IF PERCENT-COUNTER > ZERO
* **IF NO %’S THEN
* **LIST SPECIFIC NAME(S)
* **ELSE
* **LIST GENERIC NAME(S)
PERFORM LIST-GENERIC
ELSE
PERFORM LIST-SPECIFIC.
/

* LIST ALL EMPLOYEES *

LIST-ALL.
* **OPEN CURSOR
EXEC SQL OPEN TELE1 END-EXEC
* **GET EMPLOYEES
EXEC SQL FETCH TELE1 INTO :PPHONE END-EXEC.

Figure 12. Example: COBOL DB2 phone application that invokes Java under z/OS Batch
Runtime (Part 6 of 10)

Chapter 5. Application structure and build considerations 39

IF SQLCODE = NOT-FOUND
* **NO EMPLOYEE FOUND
* **PRINT ERROR MESSAGE
MOVE ’008I’ TO MSGCODE
CALL ’DSN8MCG’ USING MAJOR MSGCODE OUTMSG
MOVE OUTMSG TO OUTMSG2
WRITE REPREC FROM MSG-REC2
AFTER ADVANCING 2 LINES
ELSE
* **LIST ALL EMPLOYEES
PERFORM PRINT-AND-GET1
UNTIL SQLCODE IS NOT EQUAL TO ZERO.

* **CLOSE CURSOR
EXEC SQL CLOSE TELE1 END-EXEC.

PRINT-AND-GET1.
PERFORM PRINT-A-LINE.
EXEC SQL FETCH TELE1 INTO :PPHONE END-EXEC.
/

* LIST GENERIC EMPLOYEES *

LIST-GENERIC.
* **OPEN CURSOR
EXEC SQL OPEN TELE2 END-EXEC.

* **GET EMPLOYEES
EXEC SQL FETCH TELE2 INTO :PPHONE END-EXEC.

IF SQLCODE = NOT-FOUND
* **NO EMPLOYEE FOUND
* **PRINT ERROR MESSAGE
MOVE ’008I’ TO MSGCODE
CALL ’DSN8MCG’ USING MAJOR MSGCODE OUTMSG
MOVE OUTMSG TO OUTMSG2
WRITE REPREC FROM MSG-REC2
AFTER ADVANCING 2 LINES
ELSE
* **LIST GENERIC EMPLOYEE(S)
PERFORM PRINT-AND-GET2
UNTIL SQLCODE IS NOT EQUAL TO ZERO.

* **CLOSE CURSOR
EXEC SQL CLOSE TELE2 END-EXEC.

PRINT-AND-GET2.
PERFORM PRINT-A-LINE.
EXEC SQL FETCH TELE2 INTO :PPHONE END-EXEC.
/

* LIST SPECIFIC EMPLOYEES *

LIST-SPECIFIC.
* **OPEN CURSOR
EXEC SQL OPEN TELE3 END-EXEC.

Figure 12. Example: COBOL DB2 phone application that invokes Java under z/OS Batch
Runtime (Part 7 of 10)

40

* **GET EMPLOYEES
EXEC SQL FETCH TELE3 INTO :PPHONE END-EXEC.

IF SQLCODE = NOT-FOUND
* **NO EMPLOYEE FOUND
* **PRINT ERROR MESSAGE
MOVE ’008I’ TO MSGCODE
CALL ’DSN8MCG’ USING MAJOR MSGCODE OUTMSG
MOVE OUTMSG TO OUTMSG2
WRITE REPREC FROM MSG-REC2
AFTER ADVANCING 2 LINES
ELSE
* **LIST SPECIFIC EMPLOYEE(S)
PERFORM PRINT-AND-GET3
UNTIL SQLCODE IS NOT EQUAL TO ZERO.

* **CLOSE CURSOR
EXEC SQL CLOSE TELE3 END-EXEC.

PRINT-AND-GET3.
PERFORM PRINT-A-LINE.
EXEC SQL FETCH TELE3 INTO :PPHONE END-EXEC.
/

* PRINT A LINE OF INFORMATION FROM DIRECTORY *

PRINT-A-LINE.
* **GET INFORMATION
MOVE LASTNAMEC TO RLNAME.
MOVE FIRSTNAMEC TO RFNAME.
MOVE MIDDLEINITIAL TO RMIDINIT.
MOVE PHONENUMBER OF PPHONE TO RPHONE.
MOVE EMPLOYEENUMBER OF PPHONE TO REMPNO.
MOVE DEPTNUMBER TO RDEPTNO.
MOVE DEPTNAMEC TO RDEPTNAME.
* **PRINT INFORMATION
WRITE REPREC FROM REPDATA
AFTER ADVANCING 2 LINES.

MOVE SPACES TO LASTNAMEC
FIRSTNAMEC
DEPTNAMEC.
/

* UPDATES PHONE NUMBERS FOR EMPLOYEES *

TELEPHONE-UPDATE.
EXEC SQL UPDATE DSN8910.VEMPLP
SET PHONENUMBER = :NEWNO
WHERE EMPLOYEENUMBER = :ENO END-EXEC.
IF SQLCODE = ZERO
* **EMPLOYEE FOUND
* **UPDATE SUCCESSFUL
* **PRINT CONFIRMATION
* **MESSAGE

�E� INVOKE BCDTranHelper "commit"
DISPLAY "After the BCcommit"
Perform ErrorCheck
MOVE ’004I’ TO MSGCODE
ELSE
* **NO EMPLOYEE FOUND
* **UPDATE FAILED

Figure 12. Example: COBOL DB2 phone application that invokes Java under z/OS Batch
Runtime (Part 8 of 10)

Chapter 5. Application structure and build considerations 41

* **PRINT ERROR MESSAGE
MOVE ’007E’ TO MSGCODE.
CALL ’DSN8MCG’ USING MAJOR MSGCODE OUTMSG.
MOVE OUTMSG TO OUTMSG2.
WRITE REPREC FROM MSG-REC2
AFTER ADVANCING 2 LINES.
/

* SQL ERROR OCCURRED - GET ERROR MESSAGE *

DBERROR.
* **SQL ERROR
* **PRINT ERROR MESSAGE
MOVE ’060E’ TO MSGCODE
CALL ’DSN8MCG’ USING MAJOR MSGCODE OUTMSG.
MOVE OUTMSG TO OUTMSG1 OF MSG-REC1.
MOVE SQLCODE TO RETCODE OF MSG-REC1.
WRITE REPREC FROM MSG-REC1
AFTER ADVANCING 2 LINES.
CALL ’DSNTIAR’ USING SQLCA ERROR-MESSAGE ERROR-TEXT-LEN.
IF RETURN-CODE = ZERO
PERFORM ERROR-PRINT VARYING ERROR-INDEX
FROM 1 BY 1 UNTIL ERROR-INDEX GREATER THAN 10
ELSE

* **MESSAGE FORMAT
* **ROUTINE ERROR
* **PRINT ERROR MESSAGE
MOVE ’075E’ TO MSGCODE
CALL ’DSN8MCG’ USING MAJOR MSGCODE OUTMSG
MOVE OUTMSG TO OUTMSG1 OF MSG-REC1
MOVE RETURN-CODE TO RETCODE OF MSG-REC1
WRITE REPREC FROM MSG-REC1
AFTER ADVANCING 2 LINES.

* SQL RETURN CODE HANDLING WHEN PROCESSING CANNOT PROCEED *

EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
EXEC SQL WHENEVER SQLWARNING CONTINUE END-EXEC.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.

�F� * **PERFORM ROLLBACK
INVOKE BCDTranHelper "rollback"
DISPLAY "After the BCrollback"
Perform ErrorCheck

IF SQLCODE = ZERO

* **ROLLBACK SUCCESSFUL
* **PRINT CONFIRMATION
* **MESSAGE
MOVE ’053I’ TO MSGCODE
ELSE

* **ROLLBACK FAILED
* **PRINT ERROR MESSAGE
MOVE ’061E’ TO MSGCODE.
CALL ’DSN8MCG’ USING MAJOR MSGCODE OUTMSG.
MOVE OUTMSG TO OUTMSG1 OF MSG-REC1.
MOVE SQLCODE TO RETCODE OF MSG-REC1.
WRITE REPREC FROM MSG-REC1
AFTER ADVANCING 2 LINES.
GO TO PROG-END.

Figure 12. Example: COBOL DB2 phone application that invokes Java under z/OS Batch
Runtime (Part 9 of 10)

42

Binding DB2 with Java JDBC and COBOL embedded SQL

Note: Before you begin, it is important to be familiar with the DB2 for z/OS
package creation for SQLJ programs. For additional details, see the following
information about writing and preparing Java programs that access DB2 for z/OS
databases:

v The topic about "Programming for Java" in http://publib.boulder.ibm.com/
infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.db29.doc.java/
db2z_java.htm

v The topic about "Preparing and running JDBC and SQLJ programs" in DB2
Application Programming Guide and Reference for Java.

v The topic "Binding an application" in DB2 Application Programming and SQL
Guide and in http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/
index.jsp?topic=/com.ibm.db29.doc.apsg/db2z_bindplanpanel.htm

As input, the JDBC driver of z/OS supports application package collections or a
plan name. Embedded SQL in IBM Enterprise COBOL routines typically use a
bound DB2 plan as input. Packages provide more flexibility by minimizing full
application rebuilds when only one SQL source file is updated. Therefore, a best
practice for the hybrid mixture of COBOL and Java JDBC sharing a local RRSAF
attachment is to use a package list passed to the JDBC driver through the JDBC
property db2.jcc.pkList. These JDBC properties can be passed on the Java
command line using -Dprop_name=value. When many properties are involved, you
can use the special JDBC property -Ddb2.jcc.PropertiesFile=pathname of the
file, where the PropertiesFile contains the list of desired jcc.db2.* system
properties. You can also use JDBC APIs to set properties; for more information,
refer to DB2 Application Programming Guide and Reference for Java.

For the commands necessary to build SQLJ packages for Java programs containing
SQLJ, see “Commands for SQLJ program preparation” on page 44.

* PRINT MESSAGE TEXT *

ERROR-PRINT.
WRITE REPREC FROM ERROR-TEXT (ERROR-INDEX)
AFTER ADVANCING 1 LINE.

�G� * Java Exception Check *

ErrorCheck.
Compute RETCODE = 0
Call ExceptionOccurred
using by value JNIEnvPtr
returning ex
If ex not = null then
Call ExceptionClear using by value JNIEnvPtr
Display "Caught an unexpected exception"
Invoke ex "printStackTrace"
MOVE 99 to RETURN-CODE
End-if.

Figure 12. Example: COBOL DB2 phone application that invokes Java under z/OS Batch
Runtime (Part 10 of 10)

Chapter 5. Application structure and build considerations 43

|

|
|
|
|
|
|
|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.db29.doc.java/db2z_java.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.db29.doc.java/db2z_java.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.db29.doc.java/db2z_java.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.db29.doc.apsg/db2z_bindplanpanel.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.db29.doc.apsg/db2z_bindplanpanel.htm

There is considerable flexibility when binding with existing packages and DBRM
members, or both. To bind a COBOL program containing embedded SQL, which
has been preprocessed or co-processed to produce DBRM member XMPCOBJX
(for instance, COBOL extended with Java JDBC), you can use --.

Using the example in Figure 13, you now have a new COBOL collection named
XMPCOBJX.*. This can be passed to z/OS Batch Runtime as the system property
db2.jcc.pkList, which can be appended to the default JDBC-provided NULLID
collection. On the Java command line, for example, this would be seen as follows:
-Ddb2.jcc.pkList=NULLID.*,XMPCOBJX.*

You should also grant package privileges, according to the specific security
standards that are in place at your installation. Using the example in Figure 13, you
would specify the following statement, where authid can be either a user ID or
secondary ID, such as a RACF (SAF) group name.
GRANT EXECUTE ON PACKAGE XMPCOBJX.* TO authid

Commands for SQLJ program preparation
To build SQLJ packages for Java programs that contain SQLJ embedded SQL,
knowledge and use of the following commands is a must:

sqlj - SQLJ translator
The sqlj command translates an SQLJ source file into a Java source file and
zero or more SQLJ serialized profiles. By default, the sqlj command also
compiles the Java source file.

db2sqljcustomize - SQLJ profile customizer
The db2sqljcustomize command augments the profile with DB2-specific
information for use at run time. It processes an SQLJ profile, which contains
embedded SQL statements. By default, db2sqljcustomize produces four DB2
packages: one for each isolation level.

Remember, also, to include SQLJ.JAR in the classpath set up of your BCDBATCH
JCL.

//BINDCOBX JOB (1),’name’
// NOTIFY=&SYSUID,
// MSGCLASS=X,
// CLASS=A,
// REGION=0M,
// TIME=120
//BINDEXE EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//DBRMLIB DD DSN=SUIMGJB.DBRMLIB.DATA,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//REPORT DD SYSOUT=*
//SYSIN DD *
//SYSTSIN DD *
DSN SYSTEM(DSN9)
BIND PACKAGE(XMPCOBJX) MEMBER(XMPCOBJX) -
ACT(REP) ISO(CS) CURRENTDATA(YES) ENCODING(EBCDIC)

/*

Figure 13. Example: JDBC-only case

44

|

|

|
|

|
|
|
|

|

|
|
|
|

|

|
|

For the complete details, syntax, authorization, and parameters, see the topic on
"JDBC and SQLJ reference information" in DB2 Application Programming Guide
and Reference for Java.

Chapter 5. Application structure and build considerations 45

46

Chapter 6. Troubleshooting for z/OS Batch Runtime

In addition to the standard z/OS messages (in the format BCDnnnnx, where nnnn is
the message number and x is the message severity), z/OS Batch Runtime provides
logging and tracing facilities for troubleshooting problems. The following topics
explore trace and logging in more detail. For more information about messages, see
z/OS MVS System Messages, Vol 3 (ASB-BPX).

Trace facilities for z/OS Batch Runtime
All z/OS Batch Runtime classes are designed to use the standard Java trace
facilities available in the java.util.logging package. At a minimum, z/OS Batch
Runtime traces entry and exit to all significant methods, all exceptions, and all
significant events. Tracing is controlled through a system property or by the logging
configuration file, which by default is specified in the jre/lib/logging.properties
file. You can override the location of the file using the following Java system
property when you invoke z/OS Batch Runtime:
java.util.logging.config.file

Use a trace to diagnose problems in z/OS Batch Runtime. Obtain the trace using
the following system property:
com.ibm.zos.batch.container.BCDTraceConfig=trace-level

The property values for trace-level are ALL, which indicates that all events will be
traced, or NONE, which indicates no tracing. When diagnosing problems, use a
trace level of ALL.

Log facilities for z/OS Batch Runtime
z/OS Batch Runtime provides a verbose mode to provide additional messages that
can assist in diagnosing batch runtime problems. When running in verbose mode,
all messages are created for all commit and rollback requests. Messages are
written to //BCDOUT.

Signalling and exception handling by z/OS Batch Runtime
COBOL applications have a specific signal or error condition handling process. Java
has a defined signal handling process as well as a set of JNI processes for signal
and error condition handling. Language Environment also has application
programming interfaces (APIs) for application code that allows you to customize
condition handling to override the default settings.

z/OS Batch Runtime uses the JVM startup option -XCEEHDLR. This option informs
the JVM to register a stack-based Language Environment condition handler before
COBOL JNI calls. It is then able to translate potentially-recoverable Language
Environment exceptions into a Java exception and pass it back to the calling Java
code. z/OS Batch Runtime catches and reports percolated runtime exceptions out
of the Java application.

© Copyright IBM Corp. 2011 47

|
|

|

|
|
|

|
|
|
|
|
|

48

Appendix. Accessibility

Publications for this product are offered in Adobe Portable Document Format (PDF)
and should be compliant with accessibility standards. If you experience difficulties
when using PDF files, you may view the information through the z/OS Internet
Library website or the z/OS Information Center. If you continue to experience
problems, send an email to mhvrcfs@us.ibm.com or write to:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
U.S.A.

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

z/OS information
z/OS information is accessible using screen readers with the BookServer or Library
Server versions of z/OS books in the Internet library at:
http://www.ibm.com/systems/z/os/zos/bkserv/

© Copyright IBM Corp. 2011 49

http://www.ibm.com/systems/z/os/zos/bkserv/

50

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send inquiries,
in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2011 51

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. The sample programs are provided
"AS IS", without warranty of any kind. IBM shall not be liable for any damages
arising out of your use of the sample programs.

52

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS™, contain
code that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported hardware
devices. Software problems related to these devices will not be accepted for
service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Notices 53

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

54

Index

A
accessibility 49
application code

single threaded 3
application interfaces 19

B
bcd option

application name 20
default 20
example 20

argument 20
default 20
example 20

language 19
default 20
example 20

support class 20
default 20
example 20

verbose 20
default 21
example 21

BCDBATCH
guide 6
overview 7
procedure 9
quickstart guide 6

C
C code

COBOL
example 33

C DLL
example

example 33
CLASSPATH 5
COBOL

invoking Java
example 33

when z/OS Batch Runtime calls 1
where to find information 2

COBOL restriction
using Language Environment

STOP RUN 22
code examples 31
commit 21
commit function 21
Completion code

z/OS Batch Runtime 25
completion codes 23
configuration option

keyword 19
names 19
stem 19

configuration option (continued)
types of 19

configuration options 19

D
DB2

support elements 22
where to find information 2

disability 49

E
example

C calling COBOL from Java 33
COBOL invoking Java 33
Java code calling COBOL 31

exception handling 47

H
helper function 21

I
IBM Support

z/OS Batch Runtime 47
interoperability 1
INVOKE statement 21

J
J2EE processing 22
Java

configuring 5
tracing, enabling 47
where to find information 2

Java code calling COBOL 31
Java function

commit 21
static method 21

rollback 21
static method 21

Java method
definitions 22
get 22
initialize 22
notify 22
terminate 22

Java restriction
additional 23
using Language Environment

single threaded 22
JCL

invoke z/OS Batch Runtime 5
JCL examples

BCDIN procedure 11

© Copyright IBM Corp. 2011 55

JDBC
support class 20
support elements 22

JZOS 5

K
keyboard 49
keyword

configuration option 19

L
language 19
LIBPATH 5
logging 47

M
mainframe

education x

N
notices 51
Notices 51

O
overview 1

P
planning

use of z/OS Batch Runtime 3
program arguments 21

example 21
single 21
string array 21

Q
quickstart guide

BCDBATCH JCL 6

R
requirements

COBOL 2
DB2 2
Java 2
z/OS Batch Runtime 2

Resource Recovery Services (RRS) 1
restrictions

COBOL 22
Java 22
Language Environment 22

rollback function 21

S
shortcut keys 49
signal handling 47
single threaded 3
stem

configuration option 19
support class 22

definition 20
example 20
JDBC 20

SYS1.SAMPLIB
sample JCL 7

T
trace facilities 47
trademarks 53
troubleshooting

IBM Support 47
log facilities 47
trace 47
trace facilities 47

V
verbose

definition 20

Z
z/OS Basic Skills information center x
z/OS Batch Runtime

calling COBOL 1
completion codes 23
configuration options 19
configurations options 11
considerations 3
helper functions 21
initialization 1
invoke 5
overview 1
requirements 2
Resource Recovery Services (RRS) 1

56

����

Product Number: 5694-A01

Printed in USA

SA23-2270-01

	Contents
	Figures
	Tables
	About this information
	Who should use this information
	Where to find more information
	Information updates on the web
	The z/OS Basic Skills Information Center

	How to send your comments to IBM
	If you have a technical problem

	Summary of Changes
	Changes made in z/OS Version 1 Release 13 (as of October 2011)

	Chapter 1. Overview and planning of z/OS Batch Runtime
	Requirements for z/OS Batch Runtime
	Planning for z/OS Batch Runtime

	Chapter 2. Invoking z/OS Batch Runtime
	Configuring Java
	Improving Java start up time
	Java environment variables for z/OS Batch Runtime
	JAVA_HOME
	CLASSPATH
	LIBPATH
	IBM_JAVA_OPTIONS
	31-bit support

	Main JCL statements needed for BCDBATCH
	JCL for the BCDBATCH job
	Sample BCDBATCH JCL
	Procedure for modifying the BCDBATCH job

	JCL for BCDIN configurations options
	Sample BCDIN File
	Procedure for modifying the BCDIN JCL

	Sample BCDPROC to invoke z/OS Batch Runtime

	Chapter 3. Defining connectivity for the database
	Considerations for setting up z/OS Batch Runtime services for a database resource
	DB2 Java Database Connectivity (JDBC) and z/OS Batch Runtime
	Transaction management and global transactions
	Commit and rollback services of z/OS Batch Runtime
	End-of-job clean up processing

	Chapter 4. Application interfaces for z/OS Batch Runtime
	Configuration options reference
	Configuration option types
	Configuration option names
	Program arguments

	Helper functions for z/OS Batch Runtime
	Java function for commit and rollback

	Support elements for JDBC and DB2
	Language Environment restrictions for z/OS Batch Runtime
	Completion codes for z/OS Batch Runtime

	Chapter 5. Application structure and build considerations
	DLL considerations for COBOL and Java
	Example of a COBOL COMMIT wrapper

	Examples of program structures
	Building programs: compile and link JCL examples
	Code examples
	Example: Java code calling COBOL
	Example: C DLL calling COBOL from Java
	Example: COBOL code invoking Java

	Binding DB2 with Java JDBC and COBOL embedded SQL
	Commands for SQLJ program preparation

	Chapter 6. Troubleshooting for z/OS Batch Runtime
	Trace facilities for z/OS Batch Runtime
	Log facilities for z/OS Batch Runtime
	Signalling and exception handling by z/OS Batch Runtime

	Appendix. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Policy for unsupported hardware
	Trademarks

	Index
	A
	B
	C
	D
	E
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	Z

